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ABSTRACT

To better understand the early galactic production of Li, Be, and B by cosmic ray

spallation and fusion reactions, the dependence of these production rates on cosmic ray

models and model parameters is examined. The sensitivity of elemental and isotopic

production to the cosmic ray pathlength magnitude and energy dependence, source

spectrum, spallation kinematics, and cross section uncertainties is studied. Changes in

these model features, particularly those features related to confinement, are shown to

alter the Be- and B-versus-Fe slopes from a naive quadratic relation. The implications

of our results for the diffuse _,-ray background are examined, and the role of chemical

evolution and its relation to our results is noted. It is also noted that the unmeasured

high energy behavior of a + a fusion can lead to effects as large as a factor of 2 in the

resultant yields. Future data should enable Population II Li, Be, and B abundances to

constrain cosmic ray models for the early Galaxy.
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1 Introduction

The Population I abundances of eLi, Be, and B (LiBeB) have been thought for some

time to have their origin in spallation and fusion processes between Cosmic ray and

interstellar medium (ISM) nuclei (see, e.g., Reeves, Folwer, & Hoyle 1970; Meneguzzi,

Audouze, & Reeves 1971; Walker, Mathews, & Viola 1985). In the past few years these

elements have been sought extreme Population II dwarfs, stars well known to exhibit

the "Spite plateau" in lithium (Spite & Spite 1982), which is understood to indicate the

primordial 7Li abundance (Walker, Steigman, Schramm, Olive, &Kang 1991). Recently

these same Pop II stars have also been shown to additionally contain Be, (Rebolo et ai.

1988a; Ryan et al. 1990, 1992; Gilmore et al. 1992a, 1992b; Boesgaard & King 1993) B,

(Duncan, Lambert, & Lemke 1992) and most recently 6Li (Smith, Lambert, & Nissen

1992). These abundances provide important clues about the early galaxy, and cosmic

rays have been considered the most likely production mechanism for LiBeB in these

stars as well (Steigman & Walker 1992 (SW); Prantzos, Cass_, & Vangioni-Flam 1992

(PCV); Walker et al. 1993 (WSSOF); Steigman et al. 1993 (SFOSW)).

If indeed the extreme population II LiBeB arise from cosmic ray interactions, the

study of their isotopic abundances opens an important window on astrophysics. In

principle, we may be able to gain insight on early cosmic rays, as well as early star

formation rates and chemical evolution (e.g. PCV; Fields, Schramm, &_ Truran 1993;

Silk gz Schramm 1992). In addition, associated with these early cosmic ray events is

an appreciable gamma-ray flux which would contribute (perhaps significantly) to the

present diffuse gamma-ray background (Silk & Schramm 1992; Prantzos & Cassd 1993).

The early cosmic ray scenario is also of importance to cosmology. One may use the results

of a galactic cosmic-ray (GCR) spallation and fusion model to help infer primordial

7Li from the observed Li abundance (Olive & Schramm 1993). One may also use the

GCR model's cosmic ray spallation information on the Li isotopes, compared with their

observed abundances, to deduce the amount of possible stellar depletion (SFOSW).

Our previous work (WS, WSSOF, SFOSW) was an attempt at a relatively model-

independent approach. Without assuming a specific model (of cosmic ray or galactic

chemical evolution) we concentrated on testing the consistency of standard GCR models

with the recent LiBeB observations and with primordial nucleosynthesis where possible

by examining elemental and isotopic abundance ratios. In another approach, Gilmore

et al. (1992b), Feltzing & Gustaffson (1993), Prantzos (1993), Prantzos & Cassd (1993),

Pagel (1993), and particularly PCV have chosen to adopt a particular detailed model of

early galactic chemical and cosmic ray evolution to examine its predictions and compare
with observations.

In this paper we will examine in detail the dependence of the LiBeB abundances

produced by GCR nucleosynthesis on the uncertainties of, or allowed variations in, the

cosmic-ray model. As such, we will discuss the uncertainties in cosmic ray models. After

a brief review of the data, we present some model options in section 3. Our assumptions



regarding the evolution of the abundancesof a, C, N, and O are discussed in section

4. We address the issue of the Be and B slopes versus [Fe/H] in section 5. The cosmic-

ray spectrum and the confinement of cosmic rays will be discussed in section 6. We

also explore implications of these models on v-ray production in section 7. We draw
conclusions in section 8.

2 LiBeB Abundance Data

To make this work as self-contained as possible, we show in table I LiBeB isotopic

abundances observed in Pop II halo dwarf stars. We list those stars in which at least two

light elements have been observed as we will for the most part be primarily interested

in elemental or, even better, isotopic ratios. The notation we employ below and use

throughout the paper is that [X/H] represents the log abundance relative to the solar

abundance, namely log(X/H) - log(X/H)® and [X] = 12 + log(X/H). In the table, the

iron abundance represents an unweighted "world" average. For the other abundances, a

weighted average is given. The 6Li abundance was taken from Smith et al. (1993). The

7Li abundances were taken from Spite K: Spite (1982,1986); Spite et al. (1984); Hobbs

and Duncan (1987); Rebolo et al. (1988b); Hobbs & Thorburn (1991); and Pilachowski

et al. (1993). The 9Be abundances were taken from Rebolo et al. (1988a); Ryan et al.

(1992); Gilmore et al. (1992a,b); Molaro, Castelli, & Pasquini (1993); and Boesgaard &

King (1993). Finally, the boron abundances were taken from Duncan et al. (1992).

The ratios of 6Li to rLi, Li to Be and of B to Be are the observed ratios. Because,

for Pop II, the dominant contribution to the rLi abundance comes from primordial

nucleosynthesis rather than GCR nucleosynthesis, a certain degree of caution is necessary

when comparing the first two of these ratios to the predictions we discuss below. On the

other hand because there is no appreciable big bang source for either Be or B (Thomas

et al., 1993), the ratio of these two may be compared (unless there is an additional

primary source for nB as discussed in Dearborn et al. (1988), Woosley et al. (1990), and
Olive et al. (1993)).

Because of the importance of the B/Be ratio, we note that the values given in the

table for Be and the ratio B/Be, are averages over observations by several groups.

These observations themselves show some spread which may be significant. For the

star HD19445, beryllium upper limits were obtained by Rebolo et al. (1988a), giving

[Be] < 0.3, and B/Be > L3, Ryan et al. (1990) found the upper limit [Be] < -0.3 and

hence B/Be > 5 which should be compared with the value of 3.5 in the table which

represents the only positive identification of Be in this star by Boesgaard and King

(1993) and is slightly discrepant with the upper limit of Ryan et al. For HD140283, we

have measurements of Be by three groups: [Be] = -1.25 5= 0.4 from Ryan et al. (1992)

giving B/Be = 14 5= 14; [Be] = -0.97 5= 0.25 from Gilmore et al. (1992) giving B/Be

= 7 5= 5; [Be] < -0.90 from Molaro, Castelli, & Pasquini (1993), giving B/Be > 6; and
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[Be] = -0.78 + 0.14 from Boesgaard and King (1993) giving B/Be = 5 -4- 3. Finally

for HD201891, [Be] = 0.4 + 0.4 from Rebolo et al. (1988a) giving B/Be = 20 =t=26 and

[Be] = 0.67 =t=0.1 from Boesgaard and King (1993) giving B/Be = 11 + 10. As one can

see there appears to be a wide range in values (and uncertainties) in this ratio, and the

values given my be completely dominated by systematics which are poorly accounted

for in the stated error. In particular, ratios are most useful if constant surface tempera-

ture and surface gravity assumptions are used in the specific elemental determinations.
Unfortunately, this is not yet the case.

Indeed it is the uncertainties in these measurements and in the averages of these

measurements which are themselves uncertain. Namely, the treatment of systematic

errors is far from systematic. The conversion of line strengthes to abundances involves

inferences on the surface temperature and surface gravity of the star. Most observational

determinations have been made using differents sets of inputs. Though one can ascribe

some uncertainty to chosen values of these inputs, it is not always clear to what extent

these systematic errors have been incorporated into the quoted so-called statistical error,

and different authors make divergent assumptions on the uncertainty of their assumed

stellar parameters. Furthermore any average will surely underestimate the true error

because of the mistreatment of systematic errors. Thus it is our feeling that B/Be and
Li/Be ratios are extremely uncertain.

TABLE 1. OBSERVED POP II ABUNDANCES OF LIBEB ISOTOPES

STAR [Fe/H] Li [Be] [B] _Li/TLi Li/Be* B/Be*
ttD16031 -1.9 2.03 4- 0.2 -0.37 4- 0.25 251 4- 185

HD19445 -2.1 2.074-0.07 -0.144-0.1 0.44-0.2 1624-46 3.54-1.8
HD84937 -2.2 2.114- 0.07 -0.85 4- 0.19 0.05 4- 0.02 912 4- 425
HD94028 -1.6 2.10 4- 0.08 0.44 4- 0.1 46 4- 13
HD132475 -1.6 2.05 4- 0.09 0.60 4- 0.3 28 4- 20
HD134169 -1.2 2.20 4- 0.08 0.71-4- 0.11 31 + 10
HD140283 -2.6 2.08 4- 0.06 -0.87 4- 0.11 -0.1 4- 0.2 891 4- 262 6 4- 3
HD160617 -1,9 2.22 4- 0.12 -0.47 4- 0.18 490 4- 244
ttD189558 -1.3 2.014-0.12 0.894-0.33 134-11
HD194598 -1.4 2.00 4- 0.2 0.37 4- 0.12 43 4- 23
HD201891 -1.3 1.974-0.07 0.654-0.1 1.74-0.4 21+6 114-11
BD23°3912 -1.5 2.374-0.08 0.304-0.4 1174- 110

*Ratios are extremely uncertain due to inadequate treatment of systematics.
Formal errors on ratios are underestimates.



3 Cosmic Ray Models for LiBeB Spallation Pro-
duction

Currently studied models for LiBeB production are based on the work of Reeves, Fowler,

and Hoyle (1970) and the more detailed follow-up work of Meneguzzi, Audouze, and

Reeves (1971). They describe cosmic ray propagation via the simple leaky box model.

This assumes a spatially homogeneous distribution of sources, cosmic rays, and inter-

stellar material. Within this model, the propagation equation is

ONA O(bANA) 1 NA (1)
Ot - JA + OT r_s s

Here NA = NA(t, T), is the number density of cosmic ray isotopes A = LiBeB at time

t with energy (per nucleon) between T and T + dT. Note that eq. (1) is the general

propagation expression for A a primary or secondary species, with different terms being
important for each. The first term on the righthand side, JA, includes all sources for A:

/T:2 ' ' daAJA(T)=QA(T)+_.. nj dT¢i(T)--_-_-(T,T') . (2)
s3

Here QA(T) is a possible galactic source of A, given as a number rate per volume and

per unit energy; and spallation production of A appears in the sum runs over projectiles

i and targets j. Additionally, ¢i = Nivi is the cosmic ray flux spectrum of species i and,

(rA is the cross section for the process i + j _ A +.... The second term of propagation

equation (1) energy losses to the ISM, with bA -- :(OT/Ot)A allows for ionization from

the Galaxy. The third term of the propagation equation accounts for catastrophic cosmic
ray losses,

1 v" o.inel v n 1
-z., ia A i+_ (3)

Te/ $ i Test

with a_.__t encoding spallation losses of A in the ISM, and r_¢(T) being the lifetime for
cosmic rays against escape.

The propagation equation (1) is solved for the case of a steady state, ON/Ot = O,

in which cosmic ray production is in equilibrium with the losses. One thus obtains the

spectrum N of these elements, propagated from their source J. At present, we will ignore

losses due to inelastic nuclear collisions, valid when -1 _._i,_t_ (but see section 6.1).Tesc _ nSOiA "t)A

We assume that the primary cosmic ray species p, a, and CNO, have some homogeneous

galactic source J = Q, and negligible spallation production or losses: a -- 0. Writing
the solution for these in terms of the cosmic ray flux ¢ = Nv, we have

1 oo

¢/(T) - wi(T) IT dT'qi(T')exp (- [Ri(T') - Ri(T)] /A) (4)



where wi = bi/PlSMV, and qi = Qi/PISM, and i = p, a, CNO. Also, RA(TA) :

fTA dT'/(DT'/cOX)xsM is the ionization range which characterizes the average amount

of material a particle with energy TA can travel before ionization losses will stop it
(expressed in gcm -2, as X = PXSMVt). The ionization ranges were taken from North-

cliffe and Schilling (1970) for low LiBeB energies (< 12 MeV/nucleon) at which partial

charge screening effects are important, and from Janni (1982) for higher energies, using
the scaling law

RA(Z;T) = A/Z _ Rv(T ) . (5)

Here T the kinetic energy per nucleon and R v is the proton range.

In figure 1 we plot the proton and a fluxes ¢i calculated from eq. (4). To show the

effect of energy losses on the propagated flux, we also plot Aqi, the solution of eq. (1)

for negligible energy losses (bi _ 0). As we will discuss below in sections 5 and 6.1,

these losses are important at low energies and negligible at high ones. This is manifest

in figure 1, which shows the scaling ¢ = Aq to be followed closely at high energies, while

at low energies the ionization energy losses significantly reduce the propagated flux from

this scaling. This behavior is qualitatively similar for the two source types we consider;
propagation differences at low energies are discussed in section 6.1.

In solving the propagation equation for the secondary elements LiBeB, the source

term J is assumed to have no primary source component, i.e. Q = 0. The exclusive

production of these elements occurs via spallation between the primaries and the ISM:

a A # 0. One can write an expression like eq. (4) for LiBeB, giving their cosmic ray

spectrum. What we wish to know, however, is not this steady-state spectrum but

instead the amount of LiBeB thermalized and added to the ISM. To compute this from

the LiBeB spectrum one assumes that all such nuclei below some threshold kinetic energy

Tth_rm are thermalized and then one examines the LiBeB current bANA(Ttherm) below

this threshold. Below the lowest spallation threshold there is no source term in eq. (1)

for LiBeB, and the ionization loss term is much larger than the escape term. Thus to a

good approximation the propagation equation (1) reads

o-_bANA(T) = 0 ,T <_ Tt_"c (6)

and so the LiBeB current bANA(Tth_,-,,) is constant for Tth_rm below spallation production
thresholds. One may thus choose any Tth_m < T TM- th at which to evaluate this current;
we choose ours to be right at threshold.

With this method of computing the production rate of LiBeB via evaluation of the

subthreshold LiBeB current, we can write the rate of LiBeB accumulation in the ISM
as

.+ C

13

where A = _'_Li,_Be, roB, YA nA/nS-s,the @ come from eq. (4),and we have ignored
the small time variationof nil.
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The factor S_(TA, t) accounts for the energy loss of nucleus A in the ISM and gives

the probability of its capture and thermalization; it is a function of the lab energy TA

of the daughter nucleus A, as well as the epoch t, and is given by

SA(TA, t) -=-exp[-- {RA(TA) -- nA(Ttherm)} /A(t)] (8)

These energy losses in the ISM serve to trap the spallation products and so to allow

them to contribute to the LiBeB finally thermalized in the ISM. This process competes:

with the the spallation products' escape from the galaxy, quantified by the escape rate-1

7e_c of eq. (1). This quantity appears in eq. (8) through A = PlSMVTesc the (possibly)
energy-dependent average pathlength 1, also in g cm -2. Note that as r_s_ sets the scale for

the cosmic ray residence time before escape, A is the amount of matter traversed before

escape. As any Tth_r,n <_ Tt_h"c gives R(Tth_,_) _:: A, we may put SA _-- exp(-RA/A). For

"forward" kinematics, with a light cosmic ray nucleus impinging on a stationary, heavy

ISM nucleus, TA is small for typical spallation energies, and so RA << A and SA _-- 1.

For "inverse" kinematics, with a heavy cosmic ray nucleus on a light ISM particle, SA

can differ significantly from unity and the LiBeB yields are reduced accordingly.
Following Walker et al. (1992), we put

qi(T,t) = y_n(t) qp(T,t) (9)

with i = p,a, CNO: i.e., we posit the constancy of the cosmic ray isotopic and elemental

ratios at the source and over the entire energy spectrum. We then choose to make the

more serious assumption that we may express the proton source strength in the separable
form

q,(T,t) = qp(T) f(t). (10)

We will in fact consider various Population II source spectra q (see section 6.2), but we

will not allow a fully general energy or time dependence. While this has the immediate

advantage of simplifying the calculations, one may view this assumption as a postulation

that the present mechanism of cosmic ray'acceleration does_ not differ dramatically over
time in its energetics, but only in its net cosmic ray output.

In our analysis of cosmic ray model features, and in the accompanying figures, we

will concern ourselves with the effect on the LiBeB production rates--or rather their

ratios--as calculated by eq. (7). Given a set of cosmic ray and ISM abundances, and

a confinement parameter A, these rates may be evaluated numerically. As in previous

work, weused empirical values of partial cross sections tabulated in by Read and Viola

(1984). To proceed further and integrate the rates to get the LiBeB yields would require

a full model for cosmic ray and chemical evolution. We discuss this issue in the next
section.

1By writing the argument of the exponential in SA as we have in eq. (8), we are assuming A to be
constant in energy. For further discussion see section 6.1.
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As a cosmic ray model of propagation, the above amounts to the simple leaky box

(reviewed by, e.g., Ceasarsky 1980, 1987). This is the simplest model used to describe

cosmic rays today, and as such has obvious computational advantages. While the sim-

plicity of the leaky box makes it a useful tool, it is physically unrealistic and thus, in

some cases, quite inaccurate. A proper treatment of cosmic ray propagation must ex-

plicitly include diffusion effects only sketched with the leaky box confinement parameter

A. Also, a proper model must abandon the simple leaky box assumption of spatial ho-

mogeneity of sources and interstellar material. Despite these shortcomings, however, we
will follow previous authors and adopt this model in what follows, both for the above

pragmatic reasons and moreover because the epoch we consider is so poorly understood

in its relevant details that adoption of a more detailed description is not warranted at
the present time.

4 The Role of Chemical Evolution

Although we can calculate the rates in eq. (7), for a given set of parameters, using

well-understood physics, to integrate these rates requires knowledge of the chemical and

dynamical evolution of the cosmic ray and ISM species in the Galaxy's early history.

Such knowledge is sketchy at present, but some reasonable assumptions will prove fruit-
ful.

If we assume that the H and He abundances do not change much from their values
as set by the big bang, we have

H(t) _.. H BB

0.0s. (11)

If we further assume that the CNO nuclides evolve at the same rate, so that their ratios

remain constant within the early epoch considered here, we put

yo(t) yN(t) yo(t)
yoBs- yoBs - (12)

assumed to hold for times t less than the galactic age r at the birth of the Be or B star

having CNO abundances denoted here as OBS. One should interpret equation 12 with

some care, as approximation of constant C:N:O ratios is not strictly true. We expect
these elements to have different sources: O is made in type II supernovae but C and N

are made primarily in intermediate mass stars. Thus any differences in the evolution of

these sites will result in differences in the abundance ratios. Fortunately, large differences

between CN and O production are only important at early times, and the observed Pop

II CNO abundances are consistent with constant C:N:O over the timescales important

here. One should note, however, that the O/CNFe ratio, though the roughly constant,

.



does exceed the solar ratio. This comes about because of the predominance at this

epoch of type II supernovae over type I's. The effect is important for our purposes, as
spallation off of 0 gives a lower B/Be ratio than spallation off of C.

We again simplify by extrapolating the present relation between abundances of cos-

mic ray and ISM species, namely we assume that the relative enhancement of the cosmic

ray CNO abundances over interstellar CNO abundances has remain constant in time.
We put

= -- (13)
yi(t) \ Yi / pr_8_,_t

where i = CNO and the righthand side denotes the present value. We will in fact adopt
the stronger assumption, made in most work, that

YC'(t) = ylSM(t) (14)

but we note that this assertion is false for the present cosmic rays. In particular, Asaki-

mori et al (1993), and references therein, report that found a H/O depletion of about a

factor of 2 relative to solar. The proton-to-helium ratio in the cosmic rays is energy de-

pendent and varies from ,_ 0.2 at the lowest measured energies to ,,_ 0.05 at the highest

energies which interest us here. Additionally, as shown in Buckeley et al (1993), He/O

in the cosmic rays is depleted by a factor of ,-_ 4.6 relative to its local galactic value.

In this paper we have normalized to the protons, and thus adopting the observational

results would amount to reducing YH_ by 2.3, and enhancing YCNO by a factor of 2. We

will instead use eq. (14) to allow comparison of ours with previous results. Bear in mind,
however, that the cosmic ray abundance scalings are uncertain by at least a factor of 2.

One proposed model which clearly contradicts this assumption is that which explains

the Be/O constancy by having the CNO either as targets or projectiles be at supernova

production abundances. We may model this behavior by putting

yo .(t)=ySp rno o y r 8on >> 0.5 (15)

In what follows, however, wherever not explicitly noted otherwise, eq. (13) will be as-
sumed to hold.

If we allow the confinement pathlength to vary with time, then as we will see below,

we may not further simplify the rate equation (7), or the integral that is its solution.

If the confinement is taken to be constant in time---a dubious proposition, as we shall

see--we may now separate the propagated flux:

¢(T, t)= f(t)v(T ) . (16)

This allows one to write the solution to the rate equation as a sum of terms, each of

which has a factor that involves an integral over time and a factor involving an integral
over energy:

yA( )=E (17)
ij

. ..



with the "exposure time" given by

fO TAij(r) = dt yj(t) y_n(t) f(t) (18)

with r is the age of the Galaxy at the birth of the star in question, and the "reduced
rate" is

(¢a A) =/TA_ c dT ¢,(T,t)aA(T) SA(TA, t) . (19)

Note that these factors are different for forward and inverse kinematics, that is, ((I)aA)y
((I)aA)r. As mentioned above, this stems from the longer range and greater chance of

escape for the fast A-nuclei produced in inverse kinematic collisions.

With the assumptions made thus far in this section--most importantly, that of the

time constancy of A, the number of independent exposure times may be reduced to three
(sw, WSSOF):

{ A_,_ i=j=aAii = AISM forward kinematics (20)
"-*v,o inverse kinematics

Of these, we will take A_,_ as the fiducial quantity, as it measures the integrated flux

enhancement exclusively (ie with no explicit dependence on chemical evolution)

A_,,_ = dt f(t) (21)

We then define the quantity (O/H), which is a measure of the average abundance of
oxygen relative to hydrogen,:

AISM

(O/H)IsM -- "-'_,0

/_ Ot _Ot

with a similar expression for (O/H)cn.

y?,dtygsM(t)y(t)
f_ dt f(t) (22)

Note that (O/H) is to the weighted average

of O/H at time T. This average weighted by the net flux enhancement f(t), and is
normalized.

With this notation we have

YBe,B = Aaa

YLi -- Aac_

)_'_aii )l + (O/H)cn (¢a_'B)r (23)
ij ij

(Oa_} + (O/H)zsM _j (oaLi)l + (O/H)cn _' (¢aL')_ (24)
_3

9



wherethe prime on the summation indicates that any i = j = a term has been deleted.

Note that the ratio of LiBeB production rates, i.e. of eqs. (23) and (24), does not depend

explicitly on A_. However, the flux enhancement appears via the strong dependence
on (O/H), which includes a factor of A_ in its definition.

From eq. (17) it is clear that chemical evolution effects are encoded into the LiBeB

abundances in terms of exposure time, in which these effects are convolved with cosmic

ray flux evolution. While this means that the absolute abundances are dependent on

chemical evolution, it also means that the relative abundances are much less so if the ::

LiBeB isotopes compared originate in similar processes. This is the case with Be and B,

which are both produced in pure spallation events, as opposed to Li, which is produced

not only by spallation but also in a+a fusion events. This point was stressed by WSSOF,

who noted that the ratio B/Be is the least dependent on our knowledge of the early galaxy

and of early cosmic rays. WSSOF showed that any model for early cosmic ray LiBeB

production yields a B/Be ratio lying within the range 7.5 < B/Be _< 17. One might

compare this with the average of the observed values in the most extreme Population

II dwarf, HD 140283, which has B/Be = 6 -4- 3. This ratio is the strongest prediction

of the cosmic ray model. However, while the theoretical prediction is firm, particularly

in setting a lower bound to the B/Be ratio from cosmic rays, the experimental ratio

is still difficult to obtain reliably. As discussed in section 2, the true errors to the

measured value, when including systematic uncertainties, are certainly larger than the

simple weighted mean we quote here. Comparisons with the observations are thus not
all that compelling at the present time.

Under the assumption that there is no additional (primary) source for 11B, the B/Be

ratio is weakly dependent on chemical and cosmic ray evolution. However, it is well

known that the predicted value of the l°B to 11B ratio by GCR nucleosynthesis yields a

ratio of about two, whereas the observed ratio in meteorites is just over four. Dearborn

et al. (1988) proposed a possible thermonuclear production of 11B in Type II supernovae,

and Woosley et al. (1992) had suggested that neutrino processes during supernovae may

yield a significant abundance of 11B. Both suggestions are tested in a GCR and chemical

evolution model by _Olive et' al. (1993), where it was found that while the 11B-l°B ratio,

could be brought into agreement with the observation, the supernova sources, added in

a significant primary source for 11B which upsets the constancy of the B to Be ratio as

a function of metallicity. Though the data seem to disfavor this primary source which

predicts a B/Be ratio in excess of 50 at [Fe/H] < -3, the scant amount of data at present

can not conclusively eliminate this possibility.

In contrast, the ratios of Li with Be and B are always strongly dependent upon

chemical and cosmic ray evolution because of the _ - a production channel for Li. In

addition, the dominant component of the observed rLi is primordial, further complicating
comparison of Pop II LiBeB with GCR nucleosynthesis predictions.

10



5 The Be and B versus Fe Relations

Many have suggested that since Be and B arise from the interaction of stellar nucleosyn-

thesis products with cosmic rays, they should vary quadratically with elements, e.g. O,

which form their targets. This dependence is argued to follow from the fact that cos-

mic ray sources are presumed to be supernovae which are the producers of the oxygen

targets. Of course such an assumption is extremely nai've since cosmic rays have a large

confinement time and hence the instantaneous recycling approximation that yields this

quadratic dependence is quite inappropriate. Even more significant is the fact that the

data does not show this dependence and is instead best fit by a Be slope relative to O

that is much closer to 1 than to 2. This discrepancy has received some attention and

has even been mis-interpreted it as a failure of the cosmic ray model. It is obvious that

reports of the death of early cosmic ray LiBeB are, however, greatly exaggerated.

Let us now go through the logic in greater detail. The argument for a quadratic

scaling of Be and B with 0 proceeds from these assumptions: (a) Type II supernovae are

the dominant source for O, so one expects a relation to NsN, the total integrated number

of supernovae, of the form O oc NSN. (b) Supernovae are also likely to be the acceleration

site for cosmic rays, so one might nai'vely expect nthe cosmic ray flux ¢ to vary with

the current rate at which these acceleration sites are created: ¢ (x dNsN/dt if we

ignore confinement and assume instantaneous recycling of the cosmic rays. Put slightly

differently, in the leaky box model we have adopted, we have assumed an equilibrium

to hold between the rate at which cosmic rays are lost and the rate at which they are

created. Thus in this model one can argue that the cosmic ray flux is indeed proportional

to this creation rate. Then, taking the essential pieces of the rate equation (7), we obtain
the nai've result

dBe/dt (x O¢

c¢ NsNdNsN/dt

==_ Be (x O 2 (25)

which gives the advertised quadratic dependence, with an analogous equation for B
evolution.

While assumption (a) seems solid, assumption (b) is not because it accounts for

evolution of cosmic ray sources but not for changes in confinement. Indeed the evolution

of A is the critical feature allowing one to avoid the nai've secondary-to-primary ratio

for the B- or Be-to-O ratio of eq. 25. For a given source density q of primary cosmic

ray elements (at some instant t), the propagated flux ¢ increases with A, as at larger

A the cosmic rays traverse more matter before escape and so the steady state between

production and escape is reached at a higher flux. In the limit of no energy losses,

valid at high energy, the relation is ¢ = Aq. With energy losses, this relation is energy

dependent, but for the total flux PCV find that it varies roughly as ¢cx A1/2. Thus we



should alter the cosmic ray flux scaling to be ¢(t) c¢ A1/2(t)NsN(t), and it follows that

changes in the early confinement alters the cosmic ray flux, and its associated LiBeB

production. Specifically, in the place of eq. 25, we have the more general relation

dBe/dt o¢ AnOdO/dt

=::_dBe/dO (x AnO (26)

with nlel the index for the scaling law between cosmic ray flux and confinement. If A

can vary with time--and indeed it is hard to imagine how to avoid such variance--then

the simple quadratic relation between Be or B and O is clearly not the prediction of

the cosmic ray model. The effect of the variance of A is further discussed in the next
section.

6 Cosmic Ray Model Dependences

We wish to investigate the dependence of calculated elemental ratios Li/Be and B/Be

on various model parameters, for different epochs, i.e. different [Fe/H]. Such a calcula-

tion, however, requires specific models for galactic chemical and cosmic ray evolution.

Without constructing such models, what we can examine, at a given [Fe/H], are the

ratios of production rates cILi/dBe and dB/clBe and their dependence on escape length.

This comparison of production rates provides useful bounds on the elemental ratios

any full model would predict. Specifically, at a given epoch [Fe/H] and confinement

A, dLi/dBe gives the value Li/Be would take if the ISM abundances and cosmic ray

confinement had been constant for the entire history of the galaxy up to that epoch.

The ISM abundances of heavy elements CNO certainly are not constant but build up

from zero, while the ISM abundances of H and He do remain roughly constant. The

chemical evolution of the ISM affects Li and Be or B differently; Li is largely unaffected,

being made mostly by a + a fusion, while Be and B are made by spallation of the

CNO targets whose abundances will have always been rising to the levels observed at a

particular [Fe/H]. The cal6ulated dLi/dBe will thus provide a lower bound on the actual

Li/Se a full chemical evolution model would predict for a given [Fe/H]. 2 The B/Be

ratio, however, does not change at all with CNO evolution as long as the C:N:O ratios

remain constant, and thus is equal to dB/dBe . These ratios are roughly constant over

the Pop II epoch we consider here, but they do of course change eventually as the O
overabundance diminishes to it Pop I value.

2Just as the CNO abundances will have changed, so too the cosmic ray flux strength and confinement
will have evolved. Though an overall change in flux strength does not affect elemental ratios, evolution
in confinement will change the spectrum, with high early confinement leading to a harder spectrum in
the past (see next section). This decreases the Li/Be ratio, as the a + a production falls off at high
energies. This goes in the opposite direction as the chemical evolution effect. However, we will in
general explicitly examine the allowed confinement parameters, and in this context we may understand
the dLi/dBe ratio to be bounded from below.
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6.1 Confinement

PCV have detailed a chemical evolution model that can fit observed Be and B data

and does produce a slope versus iron that is smaller than the naive quadratic depen-

dence. In their model, the pathlength is assumed to be larger than the present _ 10

g cm -2, due to the larger confinement volume of the halo phase versus the disk phase,

as well as the larger early gas fraction. They suggested that the confinement varies

over the range 10gem -2 < A _ 1000gem -_. This variation arises specifically from

scaling the escape length as A (x eg H; where the gas mass fraction ag decreases with

time according to the adopted chemical evolution, while the disk scale height H has an

exponentially decreasing evolution imposed on it by hand, to simulate the dynamics of
the halo collapse.

While this line of reasoning is attractive, one must be cautiously aware of the uncer-

tainties involved. For example, the early behavior of the main confinement mechanism,

the galactic magnetic field, is not well understood. The favored means for field gen-

eration is through dynamo action tied to the galactic rotation, setting a timescale for

generation of Trot _ l0 s yr. Note that in this case the galaxy does not as efficiently

retain LiBeB long enough to thermalize them, particularly given the flatter (harder)

cosmic ray spectra and/or the inverse kinematics some have suggested (see section 6.2.

Furthermore, Malaney and Butler (1993) have pointed out that the escape length is

bounded from above. Physically, this happens when the confinement becomes so large

that nuclear destruction of fast LiBeB becomes important. In terms of eq. (1), we have

1 1 1

= Xoo,_ + n._----_ (27)

inel

where An-_lc= _i niO'ia /PtSM. Malaney and Butler note that A,,,c is species-dependent

(whereas Aco,_I is not), and they estimate A,_,_ < 200g cm -2 for protons, thus setting

an upper limit for A. Prantzos and Cass@ (1993) have included this effect in the PCV

model and find it makes little change in their results,

What is the affect of a changing confinement? A variation in confinement, acts

not only to alter the flux intensity but also to change the shape of the spectrum. This

behavior is apparent in figures 2(a) and (b), which plot spectra for different values of con-

finement. Notice that in both plots the total flux is higher for larger confinement, but by

different amounts in different energy regimes. The lowest energy (< 100 MeV/nucleon)

portion does not enjoy the same enhartcement as the high energy (> 1 GeV/nucleon)

region. One can see in eq. (4) that the spectrum turns over roughly at the energy at

which R(T) ,-_ A. A spectral peak at a larger T means increased power at higer ener-

gies. In other words, increasing confinement enhances the highest energy regime and so
hardens the spectrum.

Note the different low-energy flux behaviors for the two source types, the forms of

which are given explicitly below (section 6.2, eqs. (31) and (32)). The momentum source
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diverges as T --+ 0, whereas the energy source is finite for small T. These differences

manifest themselves in the propagated fluxes. The flux derived from the momentum

source has a mild turnover at small energies, and the different A fluxes all converge.

This behavior is contained in the flux equation (4). At low energy (T ,((rap), the escape

length R(T) _ T/(OT/OX) << A, is slowly varying, and so the exponential in eq. (4)

changes slowly as well. On the other hand, the source is a featureless and steeply falling

power law: q(p) _ p-2 ,,., T-1. Thus one can, at sufficiently low energy, ignore the
confinement parameter altogether and obtain

¢(T) ,_ w-_ dT'q(T') (28)

which is independent of confinement. A source power law in total energy, however,

the source has a Characteristic scale rap and does not strongly vary over this scale.

Since R(T)/A does change appreciably in this range, eq. 28 is not appropriate, and

one must use the full flux equation, with its the strong dependence on confinement.

Thus the propagated fluxes do not display the same convergence as those derived from
a momentum-law source.

The well-known (e.g. PCV) dependence of the propagated flux on confinement has

important consequences for elemental ratios. Although changes in the total cosmic ray

intensity will not affect elemental production ratios, spectral changes can. One calculates

LiBeB production rates by convolving cross section with flux. Spallation and fusion cross

sections generically have low energy resonance peaks up to a few hundred MeV/nucleon,

there is a high energy asymptotic behavior characteristic of the interaction. Namely,
the cross sections approach a constant at high energies for spallation interactions with a

many body final state, but suffer an exponential dropoff for fusion reactions which have

few-body final states. (It should be cautioned here that the continued exponential falloff

of the a + a fusion reactions above a few hundred MeV is only an extrapolation since no

data exists at higher energies; c.f. section 6.3.) Thus the effect on dB/dBe --the ratio

of pure spallation products--is to change the emphasis on the resonance region relative

to the plateau. Both p and a cross sections for B production have lower thresholds than

those for Be, and B cross sections also display higher peaks relative to their plateaus.

Consequently, the dB/dBe ratio is lowest at cosmic ray energies in the plateau region. To

produce a low B/Be ratio requires a spectrum that gives a larger weight to this energy

regime, i.e. a harder spectrum. Just such a spectrum arises from a large confinement

scale. The absolute effect on the dB/dBe is small, but important given that B/Be is

consbrained theoretically and observationally to lie in a small range.

For the dLi/dBe , B production ratio, spectral flattening via large confinement leads

to more pronounced changes. The effect again stems from the high energy cross section

behavior: while the Be and B cross sections are asymptotically flat, the a+a --+ Li fusion

cross sections are assumed to fall off exponentially at high energy. Thus harder spectra

have a strong effect dLi/dBe as they emphasize an energy regime where the Li production

14



is not just reduced relative to Be, but in fact negligible. Thus dLi/dBe strongly decreases
with increasing confinement.

We have computed numerically the ratios of rates for the range 10 g cm -2 < A <

1000 gcm -_. The results appear in figures 3 and 4, and are in agreement with ourexpe_-

tations. The strong dependence of these ratios on the different forms of source spectra

will be further discussed below (section 6.2). In reading these figures and comparing

to observational data, one must bear in mind .the need to include evolutionary effects

properly in order to go from the plotted ratios of rates to elemental ratios. Furthermore,

as argued above, we see the falloff of both dLi/dBe and dB/dBe at large A. Note that

the scales in these figures are very different. As A is increased from 10 to 1000g cm -2,

dLi/dBe falls off by a factor of 10, whereas dB/dBe drops off by only 'about 15% for the

momentum source spectrum and even less so for the energy source spectrum.

In figure 5 we plot the production ratio dLi/dBe against [Fe/H]. Such a plot sug-

gests a comparison with observational data, but bearing in mind the caveat that the

dLi/dBe value is only a lower limit to the actual value a full chemical evolution model
would give.

In our considerations thus far we have followed most previous work on early LiBeB

in putting A to be a constant in energy. This parameterization offers a simple way of

trying to characterize the early galactic conditions which, as has been pointed out, are

poorly understood. While offering simplicity, this approach does suffer the criticism

that the choice of a constant escape length does not fit the observed present day cosmic

ray pathlength distribution. As shown most recently in Garcia-Mufioz et al. (1987), the

escape length varies with energy, increasing slowly to a maximum around a GeV/nucleon,

then decreasing as T -°._. They find that their empirical form for A(T) is well fit by

with A0 = llgcm -2, T1 = 850 MeV, and T_ = 300 MeV; _ = +2 for T < T1, and

t9 = -0.6 for T _> T1. A plot of this function appears in fig. 6. As is well-known, an

energy-dependent pathlength changes the solution to the propagation equations (1 and
7), with the replacements

T dT'R(T)/A _ (30)
w(T')A(T')

where w(T_) = (OT/Ot)/P,SMV.

We have allowed the normalization parameter A0 in A(T) to vary, and figures 7

and 8 compare the resulting dLi/dBe and dB/dBe to the same ratios obtained with

a constant A(T) = A0. Note that the changes are relatively small. This is because

the energy dependence of the pathlength is most important at high energies, above the

region R(T) ,,, A(T) at which the flux turns over. However, the majority of the flux
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resides in the region around and below this maximum. Since these energy regimes are

largely unaffected, the LiBeB production is weakly affected as well. For the momentum

source spectrum the results with and without an energy-dependent pathlength differ by
a constant factor of roughly 25%, while for the energy source spectrum the difference

varies but is always small < 5%. The smallness of the difference between the two

confinement behaviors justifies the A(T) = A0 approximation used in this work and

elsewhere. The systematic decrease of the yields for a given scale A0 follows from the

energy dependence, under which A has a maximum, at T =/11, of only 0.8A0. Thus the

confinement is always less than this value, and very much lower for the important low
energies.

We have investigated the effect of inelastic nuclear reactions between the primary

cosmic rays and the ISM on the effective confinement given in eq. (27). As discussed by

Malaney and Butler (1993), this effect contributes an extra species-dependent and energy

dependent term to the escape length. Because the pathlength is energy dependent, one

must use eq. (30) to compute its effect. We have done so, using cross sections given in

Meyer (1972), Townsend & Wilson (1985), and Bystricky, Lechanoine-Leluc, & Lehar

(1987). The results appear in Figure 9, and the behavior is as expected. In the usual

case, dLi/dBe decreases with increasing A,I I = A_sc, and we now have Ae]l < Aesc.

Thus, we expect dLi/dBe to be consistently larger at a given A,sc, as is the case. This

effect is more pronounced at high A_, where the nuclear loss term dominates.

Another property of the early galaxy with bearing on confinement is the state of

ionization of the ISM. Energy losses are increased in an ionized medium, leading to a

shorter ionization range. Because the confinement always appears as R/A (for A(T)
constant in energy), this effectively increases the escape length PCV account for ion-

ization by doubling the energy losses for neutral media, a procedure which amounts to

assuming a fully ionized medium (Ginzburg & Syrovatskii 1964). If indeed the ionization

state evolves during the Pop II epoch, the effective change in A can affect the cosmic

ray spectrum independent of the considerations in eqns. (27) and (30).

6.2 Spectrum

Both WSSOF and PCV have independently argued for a flatter spectrum in early cosmic

rays than that presently observed. The key observation supporting this argument is the

B/Be ratio. Although the observational uncertainty here is clearly large, the current

preliminary numbers are low compared to the present day observed value of 15 ± 3 (with

e.g. Mathews, Walker, and Viola (1985) predicting ,_ 17 for Pop I), and to the Pop II

value of __ 14 calculated in WS (using a transported spectrum ¢(T) o¢ (T + mp)-2.z),
and Pop I C:N:O ratios.

The argument for a flat early cosmic ray spectrum arises if one takes a low central

value for the Pop II B/Be ratio seriously. (Remember values below 7 are impossible

in any spallation model, and so far hypothetical stellar processes enhance B.) Be and
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B arise from the samespallation processes,so there area limited number of available
differencesto exploit in fixing the ratio. Their differencesin massand chargelead to
different ionization lossesand ranges,andconsequentlydifferent confinementfor the two
elements(at a given energyper nucleon). However,with the ionization rangesscaling
law of eq. (5), it is clearthat RB(T) < RB_(T), and thus energy loss and thermalization

effects (c.f. eq. 8) favor B rather than Be and so act to increase the B/Be ratio. The

other important difference between Be and B production rates lies in their spallation

cross sections. As argued in section 6.1, the differences make the B/Be ratio sensitive

to the cosmic ray spectrum, with a lower B/Be for flatter spectra.

Another argument for a flatter spectrum has been offered by PCV (but weakened by

Malaney and Butler's (1993) arguments; see Prantzos & Cass_ (1993)). PCV note that

the low observed Li/Be ratio (once the primordial Li component has been subtracted) is

more easily reproduced by a fiat spectrum because of exponential dropoff of o_+ a cross
sections.

In addition to the effect of changes in the confinement, the propagated spectrum

obviously depends on the source spectrum. PCV choose as a source spectrum a power

law in momentum, q(p) c( p-2, a type of spectrum appearing in models of cosmic ray

shock acceleration. Such models assume acceleration via scattering off of supernova

shock waves, and have been successful in reproducing galactic and heileospheric spectra

in detail (c.f. the Blanford & Eichler (1987) review). Note that the PCV spectral index

of 2 is the universal limiting value for very large Mach number shocks. We note, however,

that despite the success of and active interest in this model, there remains disagreement

upon the the appropriate model for acceleration. It is thus worthwhile to examine the

sensitivity of the LiBeB yields to the assumed spectrum, where there remains some
flexibility to choose the spectral index.

Most important for LiBeB production is the choice of spectral type. While shock

acceleration models suggest source power laws in magnetic rigidity and hence momentum

are good candidates, the measured (and hence propagated) cosmic ray flux at earth

is also consistent with a source spectrum in total energy per nucleon. The two are

of course difficult to distinguish at the relativistic energies at which the cosmic ray

measurements are unaffected by solar modulation effects. Furthermore, solar effects

introduce large uncertainties at lower energies, rendering unreliable the data that could

make this distinction. In addition, a power law in total energy has the advantage that it

remains finite at low energies, thus providing a mockup of physical processes responsible

for preventing a divergence in the source at low energies.

Thus we have tried source spectra of power laws. both in momentum and in total
energy per nucleon, i.e.

=:=Vq(T) (x(T -I-mp)(2mvT+ T2)-('Y+1)/2, and (31)
q(T) oc (T + mp)-'Y (32)
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with m v the proton mass. For the shock acceleration model-inspired momentum spec-
trum, the index 7 is given by

for the case of large Mach number M = Vshock/Cso_,nd, the ratio of shock velocity to the

sound speed in the shocked gas. Note that the Mach number depends upon the local

ISM sound speed, which in turn depends upon, e.g. the ISM density and pressure. If

the early galaxy, or its primordial protogalactic building blocks, were to be significantly :

hotter or denser than today, then potentially the cosmic ray spectrum could be quite
different.

For the total energy spectrum we take 7 = 2.7 , which is consistent with the mea-

•sured, transported cosmic ray spectrum. Note however, that this choice is inappropriate

for the simple leaky box with energy dependent escape length. In this case, we live in

the confinement region (the galaxy), and so the escape energy dependence is folded into

that of the source. The proper source index is thus %o_rc, = %b, - fl _ 2.1, with _ the

high-energy index of the energy-dependent A from eq. (29). This is not the case in, for

example, the nested leaky box model, in which we do not live in the confinement region

(which shrouds the sources), and so we do not see its energy dependence: %o_rc_ = %b_.

Again, the model uncertainty argues for examination of a range of source indices.

Note the dramatic effect on the Li/Be and B/Be plots (figs. 3 and 4). The large low

energy flux of the momentum spectrum makes this spectrum softer than one in total

energy, and the resulting elemental ratios behave as one would expect for such a soft

spectrum. As discussed above in section 4, low energy resonance behavior is emphasized
and leads to large Li/Be and B/Be ratios.

We have allowed the spectral index 7 to vary over the range 2 < 7 -< 3. Results

appear in figures 10 and 11 from which it is apparent that the LiBeB production rates

from a source with a momentum spectrum are more sensitive to changes in spectral

index than are the rates for a source total energy law. Indeed it is clear from fig. 10
that for source spectra in momentum, indices with 3' >_ 2.5 lead to Li-to-Be relative

production rates in ratios approaching 103 . This is clearly undesirable given that all

observed Be abundances are _> 10 -13, thus implying associated Li production larger

than the observed plateau, even without the large primordial Li component.

While the relative B and Be rates (figure 11) do not vary as dramatically for the

momentum spectrum, here too they are much more sensitive than the same ratios given

a total energy spectrum. Additionally, the same range of indices that overproduce Li

relative to Be give the largest values for B relative to Be as compared..to low values for

the current preliminary but uncertain data. Nevertheless, it is intriguing that the range
of indices that fail for the Li to Be ratio seem to also do the worst for B to Be. Thus

momentum spectra with indices steeper than about 2.5 are less favored at the present

time. Note that we get no such constraints for source spectra in total energy, as we see

only mild sensitivity to a source index for Li to Be (for which all values are completely
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acceptable), and completely insensitivity for B to Be.

In figure 12 we plot dLi/dBe vs A, as in figure 3, but with different spectral indices.

For each spectral type, the production ratio grows with the steepness of the spectrum, the

growth being more pronounced for the scale-free momentum law. Figure 13 is a similar

plot for the dB/dBe ratio. Note that this ratio is mildly sensitive to the momentum

spectral index, which can change dB/dBe by 1 to 2 units, i.e. 10-20%. Such a change
might be detectable as observations improve. The dB/dBe ratio is even less sensitive to

the index of a source with a total energy spectrum. The change over the whole range is
of order 5%.

As we have alluded to earlier, a direct comparison of the data and the model cal-

culations given here is extremely difficult but can be suggestive. The ratio of of Li/Be

given in table 1 contains the primordial Li component as well as the cosmic-ray produced

Li. In some cases this correction might be quite large (a factor of 10 or more) so that

the ratios in the table represent extreme upper limits. If we had a specific cosmic-ray

nucleosynthesis model, one could, as shown in Olive and Schramm (1992) extract a Big

Bang Li abundance. For the cosmic-ray nucleosynthesis model used in WSSOF this led

to a value [Li]BB = 2.01 4- 0.07, however as we can see from figures 5a and 5b, there

is significant model dependence in the Li/Be ratio. Also, the absolute [Li] values are

plagued by the poorly given systematic errors mentioned in sectios 2. Furthermore, as
we have also noted, the element ratio will also be affected by chemical evolution. Thus

one can with certainty only require the data points as given in the table to lie above any

model curve in the figures. The trend in the data is also seen in the figures, ie. at high
metallicities the Li/Be ratio is smaller. Note that a large primordial subtraction would

favor the lower ratios found with the cosmic-ray energy source spectrum.

To get a feeling for the comparison between data and these models, we can make a

primordial subtraction corresponding to [Li]BB = 2.0. It hard to make the primordial

rLi abundance much smaller (Walker et al 1993; Krauss & Romanelli, 1990) and if it

were much larger there would be no room for cosmic-ray produced Li. In Figure 14 we

show the values of Li/Be with the above primordial subtraction. Error bars are too

large to display. We also plot the ratio from the energy and momentum-spectra for
A = 100 g cm -2 as a function of [Fe].

6.3 Other Model Features

The conventions for reporting spallation/fusion cross sectional data are strictly speaking
incomplete for calculations of LiBeB production, and thus require a model to make some

assumption regarding the kinematics of these interactions. Specifically, the tabulated

data and semi-empirical fits give the total cross section for LiBeB production at a given

incident energy. As seen explicitly in eq. (2), however, we require the full, differential

cross section daA/dTLiBeB (TLiBeB, Ten). Meneguzzi et al. (1971) and many subsequent

authors address this issue by assuming that the differential cross section is very sharply
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peaked around those values of the LiBeB energy for which TLIBeB = Tea. They put

daA (TLiseB, ToR) = aA(Toa) 6(TLis_s- Tea) (34)
dTLiBeB

with aA(Tea) the tabulated cross section.

While the approximation of sharp peaking over a small range of product energies

appears to be borne out experimentally in the cases where it has been checked, the

other approximation, that of equal energies (per nucleon) in the initial and final state

is only valid for the case of heavy cosmic rays on light targets. We have relaxed the

latter assumption, allowing for the CR energy to be related to the LiBeB energy via
some function El(Tea), changing eq. (34) to

daA (TLi,_B, TeR) = aA(Tea) _ (TLis,B - El(Tea)) (35)
dTLiB eB

With this more general formalism we have investigated two possible kinematic be-

haviors. One ansatz is that in the center of momentum frame the LiBeB is produced

at rest, with the lighter debris moving in such a way as to conserve energy. This is the

assumption we have made throughout this paper. One should compare this to another •

common assumption that in the frame in which the light target is at rest, the kinetic

energy per nucleon of the daughter nucleus is the same as that of the heavy CR parent.

We have plotted the dLi/dBe ratio for these two cases in figure 15.

The issue of spallation kinematics is raised if one considers an alternative to the

usual production scenario we have presented so far. Duncan et al. (1992) and PCV both

attempt to address the question of the Be vs Fe slope with the suggestion that perhaps

most of the LiBeB production is not from light (p, a) cosmic rays on heavy (CNO) ISM

nuclei, but the reverse: heavy cosmic rays on light ISM nuclei. Furthermore, if the heavy

cosmic rays do not have the ISM abundance or something near to it, then this could

yield significantly different Be and B production. Increased cosmic ray heavies would

result, for example, if supernovae were to accelerate their own ejecta. The evidence is not

definitive on this issue, but there are possible problems in maintaining consistency with

an assumed first ionization potential dependence of the cosmic ray source abundances.

At any rate, we have investigated the dependence of the spallation yields on forward,

reverse kinematics. Figure 16 compares the dLi/dBe ratio for the cases of normal

kinematics (i.e. LiBeB synthesis primarily from light CR on heavy ISM with a small
Ca . solaradmixture of the reverse) to reverse kinematics, in which we assume YUNO "_ YCNO,

and thus dominate the LiBeB production. Note that here the dLi/dBe ratio is much

smaller, as the a + a process is not as dominant as in the usual early galactic case.

Note that, in considering the thermalization of LiBeB, authors from Meneguzzi et al

(1971) to PCV apparently use S - 1 over all energies in the case of light cosmic rays on

heavy targets. These authors note that the daughter nuclei move more slowly than the
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cosmic ray parent and so are likely to be stopped. However, as we are considering cases

where the flux can be very hard, then we may still have quite energetic daughter nuclei

and it is important to properly allow for incomplete stopping. Note that Li, which is

made primarily by a + a fusion, is thus the only spallogenic element we consider for

which (in the dominant production process) the cosmic ray projectile not much lighter

than the ISM target. Consequently, the Li will be the fastest daughter nuclei, and thus

accurate treatment of trapping is particularly important. To compare with previous

work, we have computed yields with S -- 1 for both kinematics. Results appear in figure
17.

We see in figure 17 that the direction of the effect depends upon the spectral type.

For a momentum source, one gets a higher dLi/dBe ratio when allowing for realistic

trapping of LiBeB. The change, ranging from about 40% at large A down to 10% at

small ones, arises because Be production at high energy exceeds that of Li (because of

the a+a falloff at high energy), and these high energy Be are less likely to be thermalized

than slower daughters. This is not the whole story for a source law in energy. Here,

the spectral peak is much more pronounced and at a high energy (-,_ mp) than the

(lower energy) peak of the flux from the momentum source. The flux from the energy

source thus rises steeply at the (,,_ IOOMeV) dropoff in the Li production cross sections.

Consequently, the majority of Li production occurs in the beginning of the high energy

tail of the cross section. By disfavoring the high energy products through incomplete

stopping, one removes the faster Li made at the highest overlap of cross section and flux.

With S = 1, however, these fast daughters are included and so raise the Li production
relative to Be.

Let us now look at the dependence of the dLi/dBe production rate on the asymptotic

value of cross section for a+a _ 6,7Li. This is a fusion process and is physically different

from the other spallation processes. The data shows that these cross sections decrease

exponentially with energy, although the highest energy at which a definite cross section

has been reported is only about 50 Mev/nucl. Evidence for the continued dropoff comes

instead from upper bounds to the cross sections, which go out to ,-_ 200 MeV/nucl, with

no plateau detected. While Read and Viola (1984) recognize this, they suggest in their

cross section tabulation that a plateau might nevertheless eventually be found to exist,

and some work (notably PCV) has employed such a feature, although the data does not

justify such an assumption. We have examined the Li/Be ratio with and without such

a plateau, and find that it can have a significant effect, particularly for cases of large

confinement or spectral index near 2, as these emphasize the high energy events in which

the differences are important. Figure 18 compares the dLi/dBe ratio with and without

the cross section plateau. While the differences are not large for a momentum source

(_< 10%), for a source power law in total energy, the effect is about a factor of 2. Since

we see no evidence as yet for a plateau, in all our other computations none is assumed to

exist. However, as the effect of such a plateau is significant, we feel it is very important
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for experimentsto investigatethe behavior of the a + a ---+6,7Li at high energy.

Finally, we note the important but not decisive contribution to the overall uncer-

tainty of experimental uncertainties in cross sections and in energy losses. Cross section

uncertainties are typically at a level of _o'/cr __ 10 - 20%. While these errors are large
enough to be significant, they clearly are smaller than the other model effects we have

noted above, consequently making the model choices important ones. Energy losses are

better known, with _b/b __ _R/R __ 5% at low energies (where they are unimportant),

and _ 2% at higher energies. These errors do not significantly contribute to our overall :
uncertainty.

T Gamma Ray Production

The same passage of cosmic rays through the ISM that produces LiBeB must also create

"),-rays, as noted by Silk and Schramm (1993), Fields, Schramm and Truran (1993),

and Prantzos and Cass6 (1993). The primary 7-ray source from the nuclear cosmic ray

component 3 arises from inelastic scattering of cosmic rays on the ISM, with p + p --+
_r° ---+2% Thus the ")'-ray spectral peak is around m_/2.

The total (isotropic) "),-ray production rate by the nuclear component of the cosmic

rays, per second per cubic centimeter, is given by

EF =nH dTCp(T)o"_p(T) (36)
h

in an obvious notation. Note that the calculation is similar to that for LiBeB produc-

tion. Indeed this process occurs under very similar conditions to Li production, as both

processes derive from reactions between protons and a nuclei, which in the early galaxy

are undepleted both in the cosmic rays and in the ISM. Thus we may expect to scale

the -y-ray production to that of Li via cr(a + a _ Li) to the a(p + p --_ -),) cross section

ratio. One should note, however, that such a simple scaling ignores the different energy

dependences of these processes, and ignores the issue of the incomplete trapping of the
Li fusion products.

Because ")'-ray production so closely follows that of Li, the model dependences will

be similar. In particular, the effects of cosmic ray evolution will be similar, as will

the uncertainties in scaling the "),-ray production to the Be. In a subsequent paper on

specific galactic evolution models we intend to quantify the ")'-fluxes and use them as a

complementary probe to the LiBeB abundance behaviors described here.

3As opposed to the cosmic ray electrons, which produce lower energy 7-rays by brehmsstrahlung.
We do not explicitly consider the electron component here, but Prantzos and Cass6 argue that it should
scale with the nuclear component as it does today, and using this scaling they calculate the contribution
to the isotropic 7-ray background.

.H
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8 Conclusions

In this paper we showed in detail that there are many uncertainties about early cosmic

ray behavior and therefore a range of possible assumptions from which one must choose

in building a model for this behavior. Furthermore, the variance in possible early cosmic

ray models can have a significant effect of on the calculation of cosmic ray production of

LiBeB (and ")'-rays)in the early galaxy. The variance in the models derives both from

uncertainties about present cosmic rays and from uncertainties about the evolution of
their injection and acceleration, as well as confinement.

Because these uncertainties are difficult to resolve, we conclude that future work in

modeling early cosmic rays must allow for cosmic ray model variances and evolution.

As shown in section 6.2, the choice of source spectral type is significant yet not settled

even for today's cosmic rays, with power laws both in total energy per nucleon and in

momentum being allowed. Also, we show that cosmic ray evolution derives not only

from changes in source strength, but also from changes in confinement, as detailed in

sections 4 and 6.1. Evolution of confinement can have important effects, for example in

altering the nai'vely expected Be-to-Fe slope, as outlined here and shown in the detailed

model of PCV. Additional considerations are noted in section 6.3, most notably the

effects of inelastic nuclear collisions on confinement, as have been noted by Malaney and
Butler (1993).

In light of our findings we now turn to the work to date on early cosmic ray production

of LiBeB, namely the relatively model-independent work of WSSOF and its sequels, and

the detailed cosmic ray and chemical evolution model of PCV. The flatness of the curves

in figure 13 justifies the claim in WSSOF that the B/Be ratio in cosmic ray models is

indeed insensitive to the details of cosmic ray models. In addition, because Be and B are

pure spallation (as opposed to ot ÷ _ fusion) products, their production ratio dB/dBe is

independent of [Fe/H] and varies only with the C:N:O ratios of targets. To the extent

that this ratio remains fairly constant, we can conclude that the B/Be ratio is insensitive

to chemical evolution as well, and thus. We consequently find B/Be to be well-chosen

as a model-independent signature of the spallation process.

The Li isotopic ratio, discussed in SFOSW, 8LifLi shows a similar independence to

cosmic ray model features but does have a moderate sensitivity to chemical evolution

via the ISM ratio He/CNO, which sets the relative contributions of the (_ + _ fusion

versus spallation contributions to 6LiFLi. We find that dTLi/d6Li is always within

-._ 30_ of unity for all spectra and escape parameters considered here. This uncertainty

is much smaller than that of the 6LiFLi ratio of Smith et al (1992). Consequently we

find SFOSW's assumption of a temporally constant d6Li/dTLi production ratio to be
appropriate.

However, we find that the "zeroth order model" of WS, SFOSW, and SFOSW to be

overly simplistic not only in its lack of chemical evolution, but also in its lack of any

kind of cosmic ray evolution. The effect on predictions of this model is unimportant for
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the B/Be limits, but their calculationsof the Li/Be ratio are, as wehavenoted,only a
lower bound to the actual ratios.

The PCV model does allow for chemicalas well as cosmic ray evolution, and in
particular they allow for evolution of cosmicray confinement.We thus find their model
indeedto be a usefulexaminationof LiBeB production. Our caution is that their model
is a specific one made with particular, albeit reasonable,assumptions. Their specific
cosmicray sourcemodelwe find to bewell-motivatedand reasonable,but not a unique
choiceand wewould urgethat future work considerdifferentmomentumsourceindices,
aswell assourcespectrain total energy.Furthermore,PCV admit that their particular
implementation is to somedegreearbitrary. In the first place, it is not obviouswhich
parameterscontrol A. Secondly,evengiven a particular scalingprescription, it is not
trivial to model the input parameters(e.g. galactic scale height and magnetic field)
accurately. PCV assumeA dependsupon the scaleheight of the collapsingdisk, but
they do not computethe collapseexplicitly, and so imposean ad hoc time dependence.

Clearly a firm model for A evolution is crucial, but at present is unavailable. We agree
with PCV that more theoretical work in this area is needed.

In summary, we feel that improved data on PopII LiBeB abundances with consistent

controls on systematics might lead to an ability to constrain models for the origin and

propagation of cosmic rays in the early galaxy.
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FIGURE CAPTIONS

Figure 1: (a) The cosmic ray proton flux and a spectra ¢ compared to source spectra

(q(p) cx p-2) scaled as Aq. Note that in the limit of no energy losses (a good

approximation at high energy) we have ¢ = Aq, and so departure from this scaling
indicates the effect of energy losses. Note also that the a flux scales very well with

the proton flux as the He cosmic ray abundance 0.08. That this proportionality is

accurate over the whole energy range reflects the similar energy loss behavior due
to the scaling A/Z 2.

(b) As in (a), for q(T) cx (T + mp) -2"7.

Figure 2: (a) The transported cosmic ray proton flux for a range of confinement pa-

rameters: A = 10, 30, 100, 300; and 1000 gcm -2. The source is a power law in
momentum, q(p) o¢ p-2.

(b) As in (a), for a source power law in total energy, q(T) o¢ (T + mp), 2.7.

Figure 3: The Li to Be production ratio as a function of pathlength. The solid line is

for a source spectrum that is a power law in momentum, q(p) o¢ p-2; the dashed

line is for a source power law in total energy, q(T) cx (T + mp) -2"7. We put [C/H]
= [N/HI =-2.5, [O/H] =-2.0.

Figure 4: The B to Be ratio as a function of pathlength, plotted as in fig, 3.

Figure 5: (a) The production ratio of Li to Be as a function of metallicity [Fe/H], for a

source q(p) (x p,2, and for a range of conement parameters: A = 10, 30, 100, 300,

and 1000 gcm -2. See discussion in the text regarding comparison to observations.

(b) As in (a), for a source q(T) c< (T + mp) -2.7.

Figure 6: A plot of the pathlength distribution of equation (29), chosen in Garcia-

Mufioz et al. (1987) to provide the best fit to the observed B/C ratio.

Figure 7: (a) The dLi/dBe ratio for A(T) = A0 (solid line), and for A(T) given by

equation (29), with A0 as indicated on the figure (broken line). The source spec-

trum is q(p) (x p-2, and ISM abundances are [C/H] = [N/H] = -2.5 and [O/H] =
-2.0.

(b) As in (a), for a source spectrum q(T) c< (T q- mp) -2"_.

Figure 8: (a) The dB/dBe ratio for A(T) = A0 (solid line), and for A(T) given by equa-

tion (29), with A0 as indicated on the figure (broken line). The source spectrum

is q(p) cx p-2 and ISM abundances are [C/H] = [N/H] = -2.5 and [O/H] = -2.0.

(b) As in (a), for a source spectrum q(T) (x (T + rap) -2"_.
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Figure 9: (a) The dLi/dBe ratio for A = A_sc, the usual case (solid line), and for A(T)

given by eq. (27), (broken line), where we have plotted against A_sc. The source

spectrum is q(p) _x p-2 and ISM abundances are [C/H] = [N/H] = -2.5 and [O/H]
= -2.0.

(b) As in (a), for a source spectrum q(T) cx (T + my) -2"7.

Figure 10: The ratios of Li to Be production rates, shown as a function of source

spectral index 3' for a source spectrum in momentum and in total energy. Note that

the yields from the momentum spectrum are very sensitive to the index adopted,

and the ratio of rates can become unacceptably high in this case. In contrast, the

yields from the total energy spectrum are relatively insensitive to spectral index,
and are all at acceptably low levels.

Figure 11: As in fig. 10 for the ratio of B to Be rates; the same trends are seen. Note

however that the B/Be ratio is negligibly sensitive to the total energy index, and
is only mildly sensitive to that for the momentum law.

Figure 12: (a) Curves of dLi/dBe, as a function of A, for different spectral indices %
The source is q(p) oc p-2.

(b) As in (a), for q(T) _x (T + rap) -_'7.

Figure 13: As in fig. 12, for the dB/dBe ratio.

Figure 14: Similar to figure 5. We plot dLi/dBe for each source type at A = 100g cm -2.

The data, as described in the text, has been corrected assuming the minimal

allowed primordial 7Li production, [_Li]ss = 2.0 and thus (linearly) subtracting

this amount from the Li vales of table 1. See discussion in the text regarding

caveats in comparing the theoretical curves, which are upper bounds, to the data.

Figure 15: The dLi/dBe ratio for different determinations of the daughter nucleus

kinematics. The solid curve is calculated assuming that the daughter nucleus is

stationary in the center of momentum frame of the parents; this is the standard

used throughout this paper. The dashed curve is calculated assuming that, in the

rest frame of the light parent, the daughter kinetic energy per nucleon is equal

to that of the heavy parent. The source spectrum is q(p) c< p-2 for curves (a

and (b, and q(T) _x (T + rnp) -2"7 for curves (c and (d. Additionally, we put
[C/H]=[N/H]=-2.5, [O/H]=-2.0.

Figure 16: (a) The dLi/dBe ratio for (solid line) cosmic ray CNO abundances equal
to ISM abundances on o ISM

(YONO -- ucNo, the usual case), and for (dashed line) cosmic

ray CNO abundances fixed to be solar (YCNOCn>> _'CNOJ.°ISM _ The source spectrum is

q(p) oc p-2 and ISM abundances are [C/HI = [N/H] = -2.5, and [O/H] = -2.0

(b) As in (a), for a source spectrum q(T) c< (T + rap) -2-_.
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Figure 17: The dLi/dBe ratio with incomplete LiBeB trapping, i.e. with SLiBe B =

exp(R/A) (solid line), and with complete LiBeB trapping (SLiBeB = 1). The

source spectra are as labeled, and we put and [C/H]=[N/H]=-2.5, [O/HI=-2.0.

Figure 18: (a) The dLi/dBe ratio in the absence (solid line) and presence (broken line)

of a high energy plateau in the a + a ---+6,7Li cross section. The source spectrum

is q(p) cx p-2 and ISM abundances are [C/H] = [N/H] = -2.5 and [O/H] = -2.0.
Note the small (,-_ 10%) increase with the plateau.

(b) As in (a), for a source spectrum q(T) cx (T + mp) -2"7. Here the difference

is larger (a factor of ,-, 2), as the flux is harder than that from the momentum

flux, and so the high energy cross section behavior is more important.
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